One Finite Planet

One Finite Planet

Hydrogen: Facts vs Myths, blue vs green.

Page Contents

Relevant Topics:

All Topics
More On This Topic

2023 may not the year to buy an EV, but it’s definitely too late to buy a new ICEV!

While there are still valid reasons to hesitate before buying an EV in 2023, it’s definitely late to buy a new ICE vehicle and a better time to instead plan a combustion engine exit.

Considering the trend from where EVs were 5 years ago to today, and then projecting EV sales growth over the next 5 years, and it seems almost certain almost all ICEVs of today are an obsolescence risk.

While this does not mean everyone should rush out and buy an EV, it is an opportunity to prepare for an aspect of the future that may catch some unawares.

Read More »

RCS – The SMS successor and blue bubbles vs green culture war.

The world and usage of SMS has moved on since the introduction in 1992, and the system lacks many features now seen as essential including, even the ability to see if a message has been received.

Apple has its own proprietary “iMessage” SMS/MMS successor for communication between iPhones within the Apple walled garden and the bubble wars, Facebook has its own messages system and has “What’s App”, but is there room for a true SMS successor that is not a walled garden fully controlled by one technology company to create division into “tribes”, and instead is able to connect all devices just like the original SMS system?

RCS is simple to enable and is the best messaging solution for Samsung and other Android phones and to end culture wars and walled gardens.

Read More »

Software and tips for BYD Atto 3 + other BYD EVs.

Although this page is being updated to cover more topics time, it is launched with information on side loading Apps to the BYD Atto 3 prior to the 1.5 update in May 2023.

Rather than a typical webpaper, this page is really only of interest to owners of BYD vehicles.

See page contents for topics

Read More »

One pedal driving and regen brakes explained: reality, myths, hype, fads and Tesla vs the rest.

To make sense of all the often seemingly conflicting information on “regen“, one-pedal-driving, and how to best drive an EV, it really helps to know there are two different systems for how the “STOP pedal”, aka the “brake pedal”, to works in an EV:

  1. 1. Like an ICE vehicle, as with Tesla and perhaps some other EVs.
  2. 2. Using brake-by-wire as with most EVs.

Confusion over the two systems is part of it, but there are so many myths and so much misinformation about regen-braking and one-pedal-driving “regen braking”, and is why a low regen setting can be less efficient in a Tesla, but won’t matter and can help in practically all other EVs, and why “one-pedal-driving” is not necessarily the most efficient way of driving.

Despite the fact there is so many myths leading to so much misinformation making it sound complex, driving an EV for optimum efficiency is usually extremely simple.

Read More »
All Topics

Page Contents

There is much talk of a 'hydrogen economy', but what is the substance behind it all? There are many myths but hydrogen can be :

  • 'green' hydrogen, not a source of energy, but a less efficient storage stepping stone on the path to battery power.
    • or
  • blue/grey hydrogen, the fossil fuel industries' hope for greenwashing emissions.

This exploration provides looks at the reality, and the myths about hydrogen, and provides background for other pages such as: Electric or Hydrogen Cars and Hydrogen Scams.

Hydrogen: Facts vs Myths, blue vs green.

There is much talk of a 'hydrogen economy', but what is the substance behind it all? There are many myths but hydrogen can be :

  • 'green' hydrogen, not a source of energy, but a less efficient storage stepping stone on the path to battery power.
    • or
  • blue/grey hydrogen, the fossil fuel industries' hope for greenwashing emissions.

This exploration provides looks at the reality, and the myths about hydrogen, and provides background for other pages such as: Electric or Hydrogen Cars and Hydrogen Scams.

There is much talk of a ‘hydrogen economy’, but what is the substance behind it all? There are many myths but hydrogen can be :

This exploration provides looks at the reality, and the myths about hydrogen, and provides background for other pages such as: Electric or Hydrogen Cars and Hydrogen Scams.

Facts vs Myths.

Abundance Myth.

Despite hydrogen being the most abundant, and lightest, element in the Universe, there is no huge supply here on Earth. The Universe is around 70% hydrogen, but the Earth is 0.14% hydrogen, and what hydrogen there is, in bound into compounds requiring energy for extraction. To quote Monty Python: “there is bugger all down here on Earth“.

Yes, hydrogen is the most abundant element in the universe, at around 70% of all regular matter (regular as in ignoring dark matter) and hydrogen and helium together account for 98%. But most of the universe is also colder than 200 degrees below zero, so clearly “most of the universe” is not how things are here on Earth.

Earth is only around 0.14% Hydrogen, with Oxygen (47%), Silicon (28%) , Aluminium (8%) and Iron (5%) are the most common elements here on Earth. So Hydrogen is not as abundant here on Earth as some sources suggest.

Hydrogen is element number 1, and the lightest element in the universe. During formation, the Earth was is not sufficiently massive to retain free hydrogen (or even helium, the next lightest) because these gases are so lightweight, so instead of being 98% hydrogen and helium like the universe overall, the earth started out with zero free hydrogen and helium, as both floated off into space. The only hydrogen which was retained on earth, was hydrogen chemically attached to other, heavier elements, in chemical compounds, and that hydrogen is around 0.1% of the Earth.  There was no helium at all, as helium does not form compounds, so was not retained in any form, and what helium exists now is a by-product radioactive decay of larger elements, with almost 5 billion years of radioactive decay meaning we now have some helium on Earth too, but nothing like the average for the Universe. Although hydrogen atoms will normally combine with other atoms to form compounds on Earth, in space there is so much more hydrogen than any thing it can combine with, that most of the atoms in the universe exist as unattached hydrogen atoms. Helium does not form compounds, so given how hydrogen atoms so outnumber all atoms other than hydrogen and helium, most hydrogen atoms have nothing left to join with. On Earth, all the hydrogen is normally joined, or at risk of floating of into space. We are not yet running out, but the “most abundant” does not apply for Earth.


Hydrogen is ‘sustainability neutral’ in that Hydrogen being involved says nothing about whether a particular use is sustainable or not. Hydrogen project can be highly sustainable, but so far most are not at all sustainable. This is because most hydrogen in use so far, is extracted from fossil fuels in process just polluting as just using fossils for energy. Sustainability of the project is dependent of the source of the hydrogen, as discussed below.

Even use of ‘green’ hydrogen is not without sustainability risks. Remember how the Earth has insufficient mass to have retained free hydrogen when the Earth formed? Well, the Earth still loses hydrogen every year through Atmospheric Escape, and separating hydrogen accelerates that process, so any leaks of hydrogen can be the ultimate in unsustainability, as the material it is gone forever, as opposed to in landfill requiring costly extraction. When burning fossil fuels, at least all the atoms remain here on Earth. For abundance of elements here on Earth, it is oxygen (47%), silicon (28%) , aluminium (8%) and iron (5%) as the most commonly available elements, with hydrogen down at 0.14%. Water is hydrogen and oxygen, so simply put, the less hydrogen, the less water. And we would miss the water if we lose too much hydrogen.

The Hydrogen As An Energy Source Myth.

On Earth, it requires more energy to produce hydrogen, than the energy they hydrogen can provide.

Every process begins with more energy is input, the the energy available from the hydrogen which was produced.

Contrast this with an energy source such as gasoline. Mining the oil and refining the gasoline uses energy, but the gasoline contains more energy is consumed by the mining and refining. Yes, you start with some energy, but end up with more energy than when you started, because of the energy in the gasoline. than natural gas. Yes . that can be released from teh hydrogen can can be obtained Free hydrogen is a potential source of energy.

Hydrogen Is Not A Source of Energy On Earth.

The Earth Can’t Retain Hydrogen: So It Must Be Extracted.

Unlike in space, such as in the Sun (91% hydrogen), or Jupiter(90%) and other massive planets (Neptune at 80%), where hydrogen atoms outnumber all other atoms, the Earth is too small to retain hydrogen molecules and what hydrogen there is on Earth (0.14% of Earths crust) exists almost entirely bonded into compounds with other atoms, and energy is required to extract that hydrogen. The are three groups of relatively abundant compounds containing hydrogen

  • water (H20), consisting of hydrogen and oxygen
  • carbohydrates, consisting of hydrogen, carbon and oxygen
  • hydrocarbons, consisting of hydrogen and carbon

Extracting hydrogen consumes energy, because each of these process requires more energy input to produce the hydrogen, than the energy which can be output by using the hydrogen fuel produced.

Further, extracting hydrogen from anything other than water, results in also extracting carbon, in practice, in the form of CO2.

‘Grey’ Hydrogen: Extracted From Natural Gas, with the CO2 emitted at the plant.

Around 95% of all hydrogen in use commercially today (2021) is ‘grey’ hydrogen which is produced from natural gas. When you burn natural gas (CH4), you get CO2 + water. Imagine if you could burn the carbon first, producing the all the CO2 at the factory, and then ship the just the hydrogen, so burning the rest will only produce the water. That is basically the process with ‘grey’ hydrogen. The same amount of CO2, but all produced in advance at the plant that extracts the hydrogen from the natural gas. It would be simply moving the pollution, but unfortunately, because the energy from the carbon of the methane, producing the CO2, has already been used at the factory, the hydrogen contains a portion of energy of the original natural gas. This means for the same energy to be available in the form of energy, you need to start with more natural gas, and will consume more natural gas than direct using the natural gas as fuel. So in fact, this process increases the total CO2 produced.

So why bother extracting hydrogen from natural gas when it would be, less expensive, more efficient, and less polluting overall to just use the natural gas as fuel? Answer, because sometimes the hydrogen provides benefits that justify the extra cost and extra total pollution:

  • Hydrogen can be used to produce electricity with no combustion, providing clean power at the point of usage even if the overall process produces more CO2.
  • Hydrogen is far lighter than natural gas, and in critical applications where weight is critical such as rocket engines, headed for space, the cost and inefficiencies are justified.

This means hydrogen powered vehicles, or whatever uses the hydrogen, can produce almost no pollution and mostly just water, because almost all the pollution was already produced at the factory. The overall process will result in more greenhouse gas per km travelled by the vehicle than staying with fossil fuels and keeping gasoline powered cars, but most of the pollution occurs away from the vehicle. This is the case with hydrogen vehicles today (2021) , because most hydrogen (95%) available now is ‘grey’ hydrogen produced from fossil fuels.

There are four main sources for the commercial production of hydrogen: natural gas, oil, coal, and electrolysis; which account for 48%, 30%, 18% and 4% of the world’s hydrogen production respectively.[5] Fossil fuels are the dominant source of industrial hydrogen.[6] Carbon dioxide can be separated from natural gas with a 70–85% efficiency for hydrogen production and from other hydrocarbons to varying degrees of efficiency.[7] Specifically, bulk hydrogen is usually produced by the steam reforming of methane or natural gas.[8]

Steam reforming is a hydrogen production process from natural gas. This method is currently the cheapest source of industrial hydrogen. The process consists of heating the gas to between 700–1100 °C in the presence of steam and a nickel catalyst. The resulting endothermic reaction breaks up the methane molecules and forms carbon monoxide CO and hydrogen H2. The carbon monoxide gas can then be passed with steam over iron oxide or other oxides and undergo a water gas shift reaction to obtain further quantities of H2. The downside to this process is that its major by products are CO, CO2 and other greenhouse gases.[5] Depending on the quality of the feedstock (natural gas, rich gases, naphtha, etc.), one ton of hydrogen produced will also produce 9 to 12 tons of CO2, a greenhouse gas that may be captured.[9]


Natural gas, consists of both carbon and hydrogen, as does gasoline (petrol). Burning natural gas, as does burning gasoline, produces CO2 and H20, both dirty (CO2) and clean (HO2)exhaust, as well as combusted impurities and a small amount of nitrous oxides. The CO2 and impurities are the major problem, and ‘mining’ hydrogen from natural gas, is effectively burning only the carbon and impurities at processing plant, leaving the hydrogen as the far clearer part of the fuel. The ‘dirty’ exhaust is produced in the same in the same quantities, but is almost all produced at the factory where potential for carbon sequestration is increased, leaving ‘clean’ hydrogen as fuel for consumers. Overall, since more natural gas is required, the pollution is greater than simply moving cars to run on natural gas.

When those promoting coal and gas also promote hydrogen, be wary, as it can be simply a way to promote future production of coal and gas, and ‘greenwash’ the pollution which no longer takes place at the vehicle. Potentially zero tailpipe emissions, but overall, increased emissions.

The clear point is, that while hydrogen can be greenhouse gas free fuel supply, the production of the hydrogen is not necessarily green.

Note, there are some, including the government of Australia which is regarded by some (as of 2020) as the last Western holdout on the climate crisis, that have a goal to become a major international suppliers of ‘clean’ hydrogen fuel, without necessarily any commitment as what level of pollution will result from the production of the hydrogen.

‘Blue’ Hydrogen: Grey Hydrogen With the CO2 ‘Greenwashed’.

What Is Blue Hydrogen?

What if the CO2 produced making ‘grey’ hydrogen, could be captured and stored? A dream for the natural gas industry, and very much the plan for several government and fossil fuel industry products worldwide.

Welcome to ‘blue hydrogen‘: hydrogen extracted as ‘grey hydrogen but working to use carbon capture and storage to offset the greenhouse penalty.

‘Blue’ Hydrogen has been described as greenwashing by some, a great hope by others. The central idea is that the natural gas industry will have a significantly brighter future if Hydrogen produced from natural gas can be seen to be environmentally friendly, as opposed to being a huge emitter of CO2, CO and other harmful by products as is currently the case.

The whole ‘blue hydrogen’ proposal is at best very questiuonalbale Hydrogen is not necessarily at all ‘green’, and can be promoted by coal and gas companies as their future.

The Carbon Capture and Storage Blue Hydrogen Problem.

Despite what you might read, carbon capture and storage can work for some applications. However, ‘blue hydrogen’ is not one of them.

A Myth Created To Delay Replacement of Fossil Fuels?

Blue Hydrogen. The greatest fossil fuel scam in history?

The label ‘blue’ is chosen to reflect that the process in not green, but perhaps the colour is just as attractive. Producing Hydrogen from natural gas is a well proven process, which, by removing the carbon from methane using oxygen, converts natural gas into Hydrogen and CO2. Since the CO2 is produced at the point of production, it is argued that sequestration of the CO2 will be easier that with natural gas. However, successful sequestration is still a concept, rather than a practice, and has not been demonstrated to be successful at this time.

Blue hydrogen is often touted as a low-carbon fuel for generating electricity and storing energy, powering cars, trucks and trains and heating buildings. But according to a new report by Cornell and Stanford University researchers in the US, it may be no better for the climate – and potentially a fair bit worse – than continuing to use fossil natural gas, which currently keeps 85% of UK homes warm. In the US, about half of all homes use natural gas for space and water heating.

Is Blue Hydrogen Really Better for the Environment than Natural Gas?
How green is blue hydrogen?

So far, since the conversion process itself requires energy and increases energy requirements, Hydrogen from natural gas results in more CO2 for a given amount of energy than if directly using natural gas.

The reality is that ‘blue hydrogen’ is not likely to be ever realised, and instead proposed in order to suggest electric vehicles and other solutions are only interim, and that we should should use fossil fuels while we wait.

Clean ‘Green’ Hydrogen: Renewable, Sustainably Extracted From Water.

Hydrogen can also be produced using green ‘energy’ sources. Even if there was abundant ‘free’ hydrogen on earth, accessing free hydrogen, and combining it with oxygen to form ‘water + energy’ would not be renewable, even if it was sustainable. The only way to have renewable hydrogen, is to extract hydrogen from water, completing the cycle. Fortunately for a sustainable planet, that is the definition of green hydrogen.

What makes hydrogen a big deal is the diversity of its potential uses. Green hydrogen — produced by splitting water into hydrogen and oxygen in an electrolyser, using renewable-powered electricity — can exponentially expand the use of solar and wind power. Right now, renewables can be used to pump the grid, but that’s almost it. You can’t put solar or wind power into your car or a plane. However, green hydrogen created by solar and wind power has the potential to do that.

Green hydrogen isn’t a stand-alone solution. It could answer up to 24% of our energy needs by 20505, and would be used along with electrification to head towards net zero carbon emissions by 2050. But what it does do is provide a green alternative for ‘hard-to-abate’ industries that can’t adapt to electrification.

Bank of America Investment Notes on ‘green hydrogen’

The above extract from the Bank of America web site (not from a ‘green’ advocate), explains ‘green hydrogen’ in a nutshell. A solution, storing energy from wind or solar or other sources, applicable for ‘hard-to-abate’ industries that can’t adapt to electrification.

Any search on ‘green hydrogen’ should give many useful results. Another useful recent page, this time from CNBC:

Hydrogen is a clean-burning molecule, meaning that it can help to decarbonize a range of sectors that have proved hard to clean up in the past

But today, 99% of hydrogen is still made using fossil fuels, usually through a pollution-heavy process

Green hydrogen, which is produced using electricity from renewable resources, could be the key to curb our carbon footprint

CNBC: Green Hydrogen is gaining traction.

Other Renewable Hydrogen?

Renewable sources have also been proposed for extracting Hydrogen from Hydrocarbons or Carbohydrates. While there would still be CO2 as a by-product of extracting the Hydrogen, the same amount of CO2 should also be consumed in producing the renewable source. For example, if extracted from vegetable oil, growing the vegetables should absorb at least as much CO2 as gained from extracting the Hydrogen. The negative is that in some cases, such as a proposal to use manure as a source, do mean liberating already captured CO2, that would otherwise remain captured. Overall, while there is research on other green sources of hydrogen, they are all indirect use of solar energy and probably inefficient compared with solar panels. For example, growing a crop, which is a form of capture of solar energy by plants, to then process organic material to extract the energy in the form of hydrogen, requires far more land and more water, than using solar cells as an source of energy to extract the hydrogen from water.

Energy From Hydrogen: Nuclear, Chemical or Electrical?

So once the hydrogen has been obtained, (hopefully ‘green hydrogen’ obtained by electrolysis using green electricity), how should it then be used to produce energy? Hydrogen can be used in Nuclear Fusion, Hydrogen Fuel cells to produce electricity, or it can be burnt to produce heat.


Hydrogen can be used in nuclear fusion reactions, the same process that powers the Sun, and powers the H-Bomb. Despite the enormous energy potential of nuclear fusion, using hydrogen for fuel is not synonymous with fusion power. In fact fusion from Hydrogen requires so much head an pressures, the H-Bombs use an atom bomb to generate the energy to trigger the nuclear fusion. So far, fusion reactors as a power source require more energy to trigger the fusion than is generated by the reactor. There is promising research, but reactors are beyond current technology, and if/when they become practical, they require very little hydrogen, and produce ample energy to extract what they do need from water.

Chemical Energy: Combustion, or Burning Hydrogen.

Combustion: Burning Hydrogen To For Heat.

The chemical reaction of burning hydrogen also produces significant energy, as demonstrated when the Hindenburg caught fire. The best use of combustion, is when heat is the goal. A gas stove, or a gas room heater, or gas hot water heater, all can use hydrogen as the gas. Burning pure hydrogen, as opposed to other gases, eliminates CO2 as by-product of the combustion. Natural gas, CH4, produces CO2 + water (H2O) when burnt, while instead, burning hydrogen produces only water. There is one trap, and that is the plumbing that has no leaks with natural gas, may leak the far small hydrogen molecules, so existing plumbing will not always be safe. Leaks aside, hydrogen could replace natural gas for heating and cooking. Not necessarily the best replacement, but it is possible.

Internal Combustion Engines: A poor alternative to fuel cells & electric motors.

Hydrogen burns or ‘combusts’ in a manner suitable for the familiar Internal Combustion Engine, and there has been over a century of experience with these engines that burn fuel and convert the heat into motion. Not only is this familiar, but unlike with other fuels, which have both carbon and hydrogen and produce CO2 as well as H2O when burnt, hydrogen produces only H2O. This is a big step forward. A familiar process, with no nasty CO2! Except, that ‘familiar’, despite all that experience is only at best close to 40% efficient, and typically closer to 20%. In the end no matter how much you refine the process, combustion primarily produces heat, and will always be losses converting heat into motion.

Fossil fuels, have a greater energy density by volume than hydrogen, which means there can be so much energy in a given space that we can live with the inherent inefficiency of using combustion to produce motion. It can be surprising to realise just how much energy is in a typically car fuel tank.

Not only are fossil fuels good in terms of energy density by volume, we have not found a better alternative to combustion to tap the stored energy. With fossil fuels, the volume is not such a problem, and we have no alternative anyway.

The lower energy density by volume means hydrogen tanks need to be larger for a given range than with fossil fuels. If you are going to burn the hydrogen in an internal combustion engine, than fuel tanks over six time (6x) larger will be required to achieve similar range to that of fossil fuel vehicle. Cars that burn hydrogen have been built, but the inefficiency of internal combustion when combined with lower energy density of hydrogen, made these cars impractical, with the range on a tank approximately 200km when powered by hydrogen.

The inefficiency result from energy lost as heat, which in internal combustion engine is quite intense. The intense heat can also lead to burning the nitrogen from the hydrogen/air mix, producing harmful, nitrous oxides, introducing pollution to what would otherwise be a clean fuel. Plus, if you use ‘green hydrogen’, instead of just digging up the fuel, making the fuel consumes energy that is expensive to waste.

We tolerate the inefficiency with fossil fuels because we have no better alternative for converting the stored energy of the fuel into motion, the size of the tanks was acceptable, and we had no alternative way to access the energy, but with Hydrogen, we do have a more efficient alternative. Which means smaller tanks, less heat, and far lower consumption of the energy used to make hydrogen.

Electrical Energy from Hydrogen: The Hydrogen Fuel Cell.

The electrical hydrogen fuel cell is far more efficient than even the best internal combustion engine, and produces electrical energy with far less heat that an internal combustion engine. Electrical fuel cells also combine hydrogen from on board tanks and oxygen from the air to produce energy, but as a more controlled reaction, the fuel cell is more efficient because there is very little heat. Less heat means less wasted energy.

The efficiency of hydrogen fuel cells combined with electric motors are the reason that car projects based on burning hydrogen ceased. There are still hydrogen based cars, but all current production hydrogen car models use electrical fuel cells, as the greater efficiency of fuel cells delivers far more range for a given amount of hydrogen. The problem of the large fuel tanks is reduced. Producing electricity in place of heat, the energy can far more efficiently propel a vehicle. Without wasted heat, or risks of pollution from burning nitrogen or other elements, the best electrical fuel cell vehicles in production can now deliver over 400km of range, or even with larger tanks 750km of range on a tank of hydrogen, although the Hyundai Nexo also claims to have the longest range of 380 miles or just over 600km. Not quite the range of the best battery cars from Tesla or the longest range Lucid Air, but still highly competitive, and the hydrogen tanks are far lighter in weight than other batteries.

If the application is not actually heating, electrical energy from hydrogen wins over combustion!

Hydrogen for Stored Energy.

How do you store Hydrogen?

Hydrogen can be physically stored as either a gas or a liquid. Storage as a gas typically requires high-pressure tanks (5000–10,000 psi tank pressure). Storage of hydrogen as a liquid requires cryogenic temperatures because the boiling point of hydrogen at one atmosphere pressure is -252.8°C.

You can store hydrogen as a liquid, as a compressed gas, or using a hydrogen absorbing material.

The Storage Problem.

Note that unlike LPG, which can become a liquid at ‘normal’ temperatures simply by compressing the gas, compressing hydrogen at regular temperatures will not result in a liquid, no matter how much compression is applied. Unless the temperature is kept below the critical temperature of -240°C, pressurized hydrogen will not liquify. This means keeping hydrogen in liquid form for an extended time requires energy to run refrigeration. As with any supercooled liquid, (e.g. liquid Nitrogen), slow boiling of some the liquid, and the resulting expansion of gas can provide some refrigeration, so using the hydrogen can itself aid in keeping the storage cold. This means that for a plane or a car or boat, or when used as rocket fuel, using liquid fuel is most practical if the vehicle will start using fuel immediately upon refuelling, as using some fuel helps keep the rest cold. This is the same process that can be observed with liquid Nitrogen, which although requiring to be kept at a similar temperature, can be kept cold when in an insulated container, by allowing some liquid Nitrogen to ‘boil’, thus removing sufficient heat.

Storage Comparison with Natural Gas, LPG, Gasoline and Diesel Fuel.

The main alternative to hydrogen as chemicals for storing energy are Hydrocarbons such as Natural Gas, LPG. Hydrocarbon are the core ingredients of Gasoline and Diesel Fuel. These hydrocarbons combine hydrogen and carbon into chains of Carbon, with hydrogen attached to the carbon chain.

The more carbon atoms, the longer the chain, and the higher the melting and boiling temperatures. Natural gas, which is Methane and has one Carbon (CH4). LPG which is mix of Propane (C3H8), and Butane (C4H10) have, respectively, 3 and 4 carbons atoms. Gasoline has a mixture of hydrocarbons with between 5 and 12 carbons, diesel fuel has hydrocarbons with between 10 and 15 carbon atoms, and candle wax made from paraffin has 25 carbon atoms. The melting and boiling temperatures increase as the chain get longer, and the characteristics progress as follows:

NameCarbon atomsCharacteristics
Hydrogen0Always a gas unless kept below -240 °C
Natural Gas/ Methane1Always a gas unless kept below -150 °C
LPG/ Propane, Butane mix3-4Normally a gas, but liquid below -42°C or at pressure above 220kpa
Gasoline/Petrol5-12Normally liquid, but a percentage as vapour
Diesel Fuel/Distillate10-15Liquid, less vapour, but can become waxy when cold
Candle/paraffin25Solid at room temperature

For internal combustion engines, a fluid is required, and liquids have better energy density than gases.

Comparison of gasses, and potential for long term storage as liquid without refrigeration.

GasBoiling TempLiquid at Pressure?(kilopascals)Combustion Temp
LPG/Propane or Butane -42°C/-44°F, Yes: 220kpa at room temp1970 °C 3578 °F
Natural Gas/ Methane−161.5 °C/−258.7 °Fonly possible below -150 °C1950 °C 3542 °F
Hydrogen−252.879 °C, ​−423.182 °Fonly possible below −240.21∘C2111 °C 3831 °F

Energy Reservoirs.

A major use of ‘green hydrogen‘ is to add storage to electrical grids powered by renewables, acting as a giant battery. Renewable energy must be combined with storage to replace fossil fuels for electrical supply. Large scale hydrogen tanks for stored energy can be located anywhere, sometimes giving such tanks an advantage over stored hydro which is dependant on terrain, and often best located in mountainous terrain that hosts delicate ecosystems. Hydrogen tanks could be one way of restoring open cut coal mines, which are typically close to power plants and significant infrastructure for connection to the electrical grid.

For bulk storage, either compressed gas or storage using a hydrogen absorbing material are possible.


But how do you get hydrogen to the consumers for heating, or to fuel tanks for any cars, planes, and ships? One possible solution is to convert current gas pipe infrastructure from the normal methane to hydrogen. There are three challenges to be overcome:

  • Pipes and valves that do not leak methane (CH4) may leak the smaller hydrogen, molecules so testing and an upgrade may be required.
  • Current gas burners are optimised for LPG (propane) or natural gas (methane), but not hydrogen. Changes would be required.
  • Burners for methane have to be adapted for propane, so it is likely burners will also need to be adapted for hydrogen.

Michael Liebreich, the influential energy analyst and founder of BloombergNEF, told Recharge in June: “You’re not going to have hydrogen in your home for safety reasons. It’s just not going to be a thing.”

‘Hydrogen in the home would be four times more dangerous than natural gas‘: government report: Recharge.

While there are proposals to convert gas infrastructure to hydrogen, these only seem to be viable from the perspective of fossil fuel sellers.

Fuel Tanks.

For fuel tanks, research continues into hydrogen absorbing materials, but so far, the choices are:

  • Liquid Hydrogen, where consumption can begin immediately and continue, or with refrigeration.
    • suitable for: race cars, planes, ship engines, special purpose automobiles.
  • Compressed gas, that can be stored indefinitely without refrigeration.
    • all above uses, plus consumer automobiles, ‘gas bottles’, and home storage.

Hydrogen: Electricity Supply When Batteries Are Unworkable.

When Hydrogen Beats Batteries.

So what is the main use of hydrogen?

  • It is not a source of energy and so does not replace fossil fuels, wind solar, hydro or nuclear.
  • It is less efficient the regular batteries due to the losses that are inherent in the required compression.

Why not just use a battery, since batteries are more efficient?

Because it turns out there are applications where batteries simply do not hold enough energy. While the compression of hydrogen costs money and reduces efficiency, with a sufficient budget, at lot of energy can be compressed into a small and light package. If there is room for batteries, and they are not too heavy, batteries will always be a better solution, but for some applications there is no room or the batteries will be too heavy, which means the less ideal hydrogen energy storage is the only option.

Hydrogen: The Stepping Stone Solution.

Prior to around 2010, battery technology limited electric cars to a range of around 100km even if they were driven at limited speed. It seemed that battery electric cars could never be ‘real cars’, as the only way to get any range was to significantly limit speed and acceleration, and even then range was insufficient for “road trips“. This meant that back in 2010, as hydrogen seemed to be the only new way to store sufficient energy for road trips, the hydrogen car was the only viable way alternative to fossil fuels.

In 2010, hydrogen cars looked like

Battery technology was improving, but at the time


It is important to distinguish ‘grey’ and ‘blue’, hydrogen extracted from fossil fuels, from ‘green hydrogen’ made from water using renewable energy.

Hydrogen is not a source of energy, but can work as energy storage.

‘Green’ hydrogen, obtained by using renewable electrical energy, is best used to produce electricity. Hydrogen is effectively best used as for stored energy that provides:

  • Alternative, less efficient but very lightweight, battery alternative.
  • Large scale storage of energy from Solar and Wind to provide on demand ‘baseload’ electrical power.

‘Green’ hydrogen one way of storing energy from intermittent renewables such as solar and wind. There are real uses for green hydrogen, and proponents who want to make a difference.

A problem is that as soon as hydrogen is discussed, given almost all hydrogen today is made from fossil fuels, advocates pushing the mythical ‘blue hydrogen‘, which is ‘greenwashed’ fossil fuel, use their deep pockets to take over the debate.

Be particularly wary of suggestions hydrogen is the solution rather then electrical solutions, since the only really viable use for hydrogen is storing bulk electricity.

Added links

Fully Charged, The Future is not Hydrogen, and no coincidence that a lot of the backers of hydrogen are oil and gas companies, but hydrogen can work for storage.