Population on a Finite World: No Vacancy.

Every niche on Earth where live is possible is fully populated to maximum capacity, and has been that way since within less than 100,000 years after life was first possible. Since then, ‘moving in’ has meant displacing the current inhabitants, in process Darwin declared “survival of the fittest”.

Is it easy to overlook that environments not fully occupied by “us” are always already fully occupied by “others”.

This is an exploration of how all environments becomes fully populated, how humanity has our current population and what we have needed to displace to get this far, and need to display to continue to displace to continue population growth.

  • Rules of Population Constraints on our finite planet.
    1. 100 doublings of population is beyond the maximum possible on Earth.
    2. If even 60 doublings were possible, even pandas or humans, could from 2 individuals within 3,000 years produce a population that would completely cover the surface of the Earth.
    3. Every living organism has had more than ample time for 100 doublings, and is normally population constrained by the limitations of a finite environment.
    4. Every niche for life, is full to capacity, except following catastrophes or major disruptions.
    5. Population growth of any species, requires environmental changes, or evolution enabling the ‘invasion’ of environment previously populated by of other species .
    6. Continued Population growth is only possible through continued reduction in populations of other species.
    7. Every species must find population stability at some point while limited to one finite planet.
  • What about humans? Are We exempt from the rules?
    • Human Population Growth, how does it continue?
    • Alternating Times of Stability and Times of Population Growth Through Technical Evolution.
    • Ignorant Displacement: Those displaced go unseen.
    • History of human population: growth steps through colonisation.

Rules of Population Constraints on our finite planet

Rule 1: 100 doublings of population is beyond the maximum possible on Earth.

Since 1 million is 1,000 times 1,000 such an organism could double its population 1,000 times in a million year timeframe, but doubling population even 100 times is more than enough for any fully populate the Earth with that organism. A doubling of population 1,000 times is , and double 63 times in 63,000 years.

The ‘wheat and chessboard problem‘ illustrates how large numbers grow by repeated doubling, also known as exponential growth.

The wheat and chessboard considers doubling 63 times, in 63 steps from step 1 to step 64, doubling each step. One grain of wheat on the first square (20=1)as the starting value, leads to 2 grains on the 2nd square (21=2), 4 on the 3rd (22=4), 8 on the 4th (23=8), all the way to 9,223,372,036,854,775,808 on the 64th and last square (263). So a single living organism would result in 9,223,372,036,854,775,808 organisms after 63 doublings.

Given the total land and ocean surface area of the Earth 510,064,472 km2, and each square kilometre is 1 million square meters, the 63 steps results in 18,082 organisms per square metre of the entire surface of the Earth, which for those who do not speak metric, is over 180,000 organisms per square foot. Not very comfortable for humans, but possible for something very small or perhaps microscopic. Allowing the 100 doubling steps would generate 2,485,275,234,437,872 organisms per square metre ( over 25 quadrillion per square foot) or 2,485,275,234 organisms per square millimetre of the entire surface of the Earth.

So 100 doublings would overrun the earth even with microscopic animals:

  • 2.5 billion organisms for every square millimetre of the entire surface of the Earth, as a result of doubling 100 times.
  • …or
  • So 25 quadrillion organisms for every square foot of the entire surface of the Earth, as a result of doubling 100 times.

For larger animals such as humans, even filling the ‘chessboard’ is not required, as just 60 doublings would mean over 1,000 individuals per square metre of the entire land and ocean surface.

Rule 2: 100 doublings need not take very long, even for humans.

Relative to length of time life has existed on Earth, 100 doublings of even slow population grown animals does not add up to very long time, relative to planet over 4 billion years old.

Every organism must have a mechanism to multiply, or they could never have reached their current population level, or recover population level in the event of catastrophe or disruption. Past population growth can be used to calculate a population doubling time. For example, pandas have been shown to be able to increase population 17% in a decade. A 17% increase means 117 pandas for every 100 after 10 years. Since 1.17 to the power 4.5 is greater than 2, then pandas at that rate would double in population in 4.5 decades, which is a similar to the population growth rate to humans between 1923 and 1972.

The population growth rate for humans makes sense. If every couple has 5 children, which is below the historic average prior to the 20th century, and if 4 of those 5 children live to have their own children, then humans would double in population every generation.

But a but a doubling in population every 50 years would result in 60 doublings in just 3,000 years producing more than 1,000 individuals for every square metre of the earth, which with animals the size of either pandas or homo sapiens, would more than completely cover the surface.

For perspective, humans doubling at this rate would have seen this would have resulted in 100 doublings during the time of Ancient Egypt (over 5,000 years with almost 30 centuries as the leading civilization).

The takeaway is that every living organism, even us recently evolved homo sapiens, have had far more than enough time to double in population 100 times, and overrun the earth as a result.

Rule 3: Every living organism has had more than ample time for 100 doublings, and is normally population constrained by the limitations of a finite environment.

Every organism on Earth has had far more than sufficient time for 100 doublings of it population, but no organism has reached the incredible population number that would result if they kept doubling unconstrained.

Since, in a small time relative to how long species survive, exponential population growth can exceed the limits of the size of our finite environment on Earth, for almost the entire existence of any species, the population of the species will be at the limit possible given environmental constraints.

This means every organism has normally reached constraints that limit further population growth.

Rule 4: Excepting for shortly after catastrophes or major disruptions, every environmental niche is fully populated.

The times an organism would experience unconstrained or less constrained population growth are:

  • When a species first evolves, first reaches a new suitable environment, or evolves new traits overcoming prior constraints.
  • Following a major catastrophe or disruption that reduced the population below previous levels.
  • In the event of changes to the environment that alter constraints such as weather or climate events, or disruption of predators or competitors for resources.

As all similar environments are not necessarily connected, an organism can be new to an environment despite having existed for some time in similar environments.

When population changes are observed other a for a new species or species new to the environment, or following catastrophes or other major disruptions, the population change is as a result of changes to the constraints.

Changes to population constraints can be short term, such as weather events, long term such as ice ages and long term climate events, or the result of evolution as observed by Darwin, or evolution of technology such as stone tools, or farming.

Rule 5: Population growth of any species, requires environmental change or evolution enabling the ‘invasion’ of environment previously populated by of other species.

If every environment is fully populated, then the only way to increase population is to outcompete other species, or for the environment to expand.

Outcompeting other species requires some form of evolution, either of genetics or behaviours.

The first land plants and animals appeared about 400 million years ago, when land first became inhabitable due to the atmosphere finally having enough oxygen to block harmful radiation and provide for respiration.

Since that time, the land joined the oceans in seeing a succession of life has replaced previous forms of life, with each species that dominated a niche reaching, and then remaining at the capacity of that niche, before eventually being replaced by an improved species.

Rule 6: Continued Population growth is only possible through continued reduction in populations of other species.

The logical consequent of these rules is that growth beyond original constraints can only continue while a species can continue to partially or fully substitute for other species within their environmental niches.

Rule 7: Every species must find population stability at some point while limited to one finite planet.

Continuing to replace other species has a limit. Eventually there is only one species.

What about humans? Are We exempt from these rules?

Human Population Growth, is it still in unconstrained growth?

It could appear that human population is still growing long after we should have reached our constraints.

With the pat t of humans can appear to have broken these rules. The theory says we humans should have reached a stable population close to 300,000 years ago, at which point population growth would stop unless humans continued to evolved to become ‘fitter’ for existing or new environments.

Yet human population growth still continues as was doubling every generation as recently as between in 1965-1972, and doubling every 50 years for half of the 20th century.

This would seem to suggest humans have never reached their limit, and our population is still growing unconstrained.

But further exploration reveals this recent growth follows pervious periods of population constraints. Homo Sapiens have existed for at least 300,000 years, which is sufficient for 6,000 doublings of population, yet if there were only 2 people 300,000 years ago, the population growth to 8 people billion now represents just 32 doublings in over 300,000 years. That would be a doubling at an average rate of less than once every 9,000 years.

To take 9,000 years to double the population requires an annual growth rate of around 0.008%. A rate so close to zero growth, that is far more likely the growth has mostly effectively zero, with occasional periods of real growth.

This means, most of the time, even the human population has had zero growth as been at a constrained level. But then, sometimes even populations that have reached a previous plateaux, experience additional growth.

In fact, looking at the history of human population growth, as far back as back as we have any data, we have never before seen population growth anywhere near the level that was seen in the 20th century.

But even excluding the recent population explosion, human population growth has extended far longer than the rules suggest, unless their has been an expansion of the environment, or evolution in some form.

Alternating Times of Stability and Times of Population Growth Through Technical Evolution.

Instead of a recent series of steps of biological evolution, humans have experienced technical evolution.

A list of some notable steps includes:

Note that even during periods of population stability, from 10,000BCE to 5,000BCE and from 200 BCE to 1600AD, there was still some population growth as humans managed to colonise more locations.

Ignorant Displacement: As Population Grows, The Displaced Go Unnoticed.

Our current society has evolved the technology to be ‘the fittest’ in almost any niches, that we can maintain a higher human population than ever before. We can also, per unit land, maintain a higher population of crops and livestock to feed us than ever before.

The downside is a history of not even seeing organisms displaced population increases are introduced.

In fact, historically even other humans displaced by humans have been repeatedly overlooked and/or underestimated. Despite that experts now believe between 10 and 16 million people lived above the Rio Grande in North America prior to Europeans arriving:

Few contemporaries agreed with Catlin’s lofty estimate [16 million] of the Indian population before contact with the white man. “Twaddle about imaginary millions,” scoffed one Smithsonian expert, reflecting the prevailing view that Indians were too incompetent to have ever reached large numbers. Alexis de Tocqueville’s cheery assertion that America before Columbus was an “empty continent… awaiting its inhabitants” was endorsed by no less than the U.S. Census Bureau, which in 1894 warned against accepting Indian “legends” as facts. “Investigation shows,” the bureau said, “that the aboriginal population within the present United States at the beginning of the Columbian period could not have exceeded much over 500,000.”

How Many People Were Here Before Columbus?

Even if there were only 500,000 people before Columbus, the nature of exponential population growth tell us, that as people had been in North America for around 30,000 years, the continent would have been populated up to the level of environmental constraints. Any land mass with even 3,000 years occupation will reach the maximum population possible for that society. Yet to people from Europe, America was ‘an empty continent’. Not only did the new arrivals not understand or see that the continent would be fully populated with the current population, they even failed to recognise the size of that population.

The new arrivals failed to recognise that this ‘new world’ continent was fully populated, and that their arrival must displace those living there already. In the 30,000 years since people first arrived in America, culture in free trading European/Middle Eastern/Asian society had managed to evolve 1,000 or perhaps even 2,000 years further in terms of dominating more of the environment, increasing population density and as a result displacing other organisms. The population of many species would need to decline in order to accommodate the influence of European/Middle Eastern/Asian evolution of society.

The spread to new territory and the impact on life before that spread highlights the changes humans had over time to the environment of Europe/Middle East/Asia, displacing other species as advances made humans the most ‘fit’ for ever more niches within the environment.

Delusions Shattered And Questions Raised.

Overview.

Calculating these numbers, has shattered some illusions I had previously been misled by, but has also raised some interesting questions still to be answered.

  • Shattered Delusions:
    • Both North America and Australia were fully populated prior to the arrival of Europeans.
    • I had thought population levels have been growing because the Earth had never been populated to capacity.
      • The reality is, Earth has been populated to capacity for the hundreds of thousands of years. Population increases result from changes to society that allow humans and their food to displace other species of life on Earth.
      • The question that arises is, has the recent unprecedented population explosion stayed within the bounds of the population now supported by our changed society, or has the change to infant mortality created an ‘overshoot’ resulting in overpopulation and the environmental damage that follows.
  • Questions:
    • As already covered, has the population explosion resulted in overshoot?
    • What does natural population constraint look like?

What is the process constraining natural population?

Consider our close relatives in the wild, chimpanzees, bonobos and even gorillas. To our knowledge, none of these animals was experiencing significant population growth prior to recent population decline due to habit loss. What stopped their population expanding, given that, like all species, their birth rates can achieve population growth where the population is lower than the constraint limit? There seems no evidence that starvation is the mechanism of population control, as we do not see a percentage of chimpanzees, bonobos or gorillas starving. If starvation was the mechanism of population control it would be everywhere throughout nature.

This topic to be further explored.

Conclusion: If it isn’t already, one day the ‘farm’ will be overcrowded.

Long before the first human walked the Earth, there was already ‘no vacancy’. For humanity to even exist, we had to outcompete and displace other living things. But is it our mission to replace every living thing possible until it is just us and the food we farm?

If our mission is to perpetually deliver economic growth as opposed to wealth per person, then yes, continual population growth is the simplest path to that mission.

However it may be that at some point, it feels like humanity is being ‘farmed’ to generate wealth for a small subset of people, at some point our farm will start to feel crowded to the point of existing like battery hens, rather than having our free range.

Finite World: Finite vs Unlimited.

Contents:

Finite: What does ‘Finite‘ actually mean?

The Key: Not Just Two Possibilities, but three.

Even in a mathematical context, there are three possibilities:

  1. Finite.
  2. Infinite.
  3. Undetermined.

Depending on context, infinite and undetermined can be equivalent, and in both cases, you not aware of any limit. Something only becomes ‘finite’ when you become aware there is a limit.

Dictionary Definition Of Finite: It depends on context.

While ‘finite’ and ‘infinite’ have mathematical definitions, dictionaries reveal that common usage extends beyond the mathematical definition. The dictionary definition of infinite includes “immeasurably or inconceivably great or extensive : INEXHAUSTIBLE” as well as “subject to no limitation”, and for finite we have “completely determinable in theory or in fact by counting, measurement, or thought” .

By example, as a human we can consider the number of times a person in the open can breathe as being infinite, even though the amount of oxygen in the air is finite so there is a theoretical limit, a person can breath ‘an inconceivably large number’ and still have no noticeable impact the level of oxygen.

The Working Definition of Finite for this context.

The meanings of finite and infinite depend on context, as outlined below, so to avoid ambiguity, in the context of these pages, ‘finite’ means:

Finite: ‘known to have a limit that could, in practice, conceivably be reached’.

Me

So yes, words have different meanings depending on context, but it this context, unless explicitly prefixed such as ‘theoretically finite’, ‘finite’ will mean with a known and potentially constraining limit.

Given the principle there are three possibilities, they become:

  1. Finite: known to have a limit that could, in practice be reached.
  2. Infinite: it is known the that limit cannot in practice be reached.
  3. Undetermined: there may be a limit, but if so, the limit has never been reached.

I would suggest that human nature is to assume that when the limit cannot be determined, then it will not in practice be reached, which means infinite and undetermined are seen as equivalent. In this context, the opposite of finite because ‘unlimited’.

Unlimited: Unconstrained by any known limit.

Again, me.

Again, words have different meanings depending on context, but it this context ‘unlimited’ will without any known constraining limit.

Finite World: When the world of humanity progressed from ‘undetermined’ to ‘finite’.

To the first people on Earth, it must have seemed that no resource was finite, virtually nothing had any known limit. It is not that people believing things infinite, it is that numbers seemed unknowable, and undetermined seemed equivalent to without limits.

There were always new lands to be discovered, hunting animals did not noticeably impact their population, nor did gathering fruit and vegetables make an impact. Fishing did not noticeably impact fish populations.

Most things remained finite until around 1650 CE. At that time no individual even knew of all the continents on Earth making even the amount of land seem unlimited. Sustainable was not a concept people needed to contemplate, as it seemed every thing humans did was inherently sustainable.

Fast forward to the 21st century and there has been a population explosion dramatically increasing the number of humans, and an industrial revolution increasing the impact individuals have on the planet. Now, most people see ‘sustainable’ as essential, but in surprisingly many ways, there are still people who do not, deep down accept the Earth is finite, and sustainability is essential.

Finite World and Sustainability: It is all relative.

Nothing is sustainable without constraints. Every ‘sustainable’ practice is only sustainable within limits as to the number of people who can engage in the practice and the length of time it can continue. In practice, ‘sustainable’ means ‘more sustainable’ rather than absolutely sustainable. Even ‘sustainable’ farming has a limit to the scale and thus the number people it can feed, and on a planet with a finite life, cannot exist forever.

A question becomes, to be ‘sustainable’ how many people can be supported and for how long? As an extreme example, even breathing air has a limit to the population size before it become unsustainable. There is always a window.

Some people see perpetual population growth as sustainable, and within a sufficiently small window of time it is sustainable. Others see burning fossil fuels as sustainable for as long as 50 years, and in their eyes that is sustainable, while younger people, of people who care about younger people, may require a longer time to be sustainable.

Then there are others who an in denial. Prior to around 1650 CE, everything seems sustainable, and it worked for so long then the same attitude can work today.

The Potential Scale and Impact of population growth: 7 trillion humans?

overpopulated_earth1

7 trillion looks like a typo, but no, the maths shows that either by continuing the actual global population growth levels typical the 20th century, or achieving 2% per year (or far less than what is currently happening in Nigeria), the maths produce this number in a relatively short time!

Alternatively, consider that if we had peak 20th century population growth rates from 1650 until now, we would already have 1 trillion humans.

While population growth itself is currently not the threat that it once was, we are still overpopulated, as any suggestion that returning to the out of control population growth of the 1960s and 1970s would cause even more long term damage to a world with 8 billion people, than that growth did on a world with 4 billion people.

Continue reading “The Potential Scale and Impact of population growth: 7 trillion humans?”

The New Economics of Population Growth in a Finite world

historical_map_world_1800

Summary: Most of us now live under ‘finite world economics’, where population growth results in a smaller share of wealth for each individual and the majority of the population, but increased revenues for Governments, nationwide businesses and multinationals who gain revenue from the entire population.  The rich win, the rest suffer.

The now finite World

When Christopher Columbus set sail for America, no one had a world map, doubt about a map the included America.  When Captain Cook ‘discovered’ Australia, as it approached the year 1800,  no civilization knew where all the land on Earth was located.  By 1900, humans knew where all the land was, but still had not explored all that land. Now (2017 at the time of writing), we basically know where all the land is and have even allocated ownership and mineral rights of all the land. Our world is now finite.

The post explores the ‘finite’ world concept, then discuss each of the two dynamics resulting in the widening of the gap between rich and poor.

Continue reading “The New Economics of Population Growth in a Finite world”

How the ‘basic income’ proposal could change society

The current wealth distribution system is an already a broken system about to face severe attack. As discussed in Robots & Job Terminators, the role of employment is set to change.

canada20flagflagbigfinlandOn engadget, the post How will you survive when the robots take your job? outlines the ‘basic income’ proposal, as put forward by many in the tech industry and being experimented with in Canada, Finland and the Netherlands. This articles provides a great starting point and conveys the basic idea and if unfamiliar with the idea it makes sense to read that article first. This post is about looking further, in terms of thoughts about what else should change if a ‘basic income’ is introduced and what would be needed to make such an idea work. What would such a measure cost, and what would be the impact on society of a total package, of a ‘basic income’ together with a logical set of policies to create a total package? Continue reading “How the ‘basic income’ proposal could change society”

Is our wealth distribution system really broken?

pot_goldA first reaction could be: “ok, the people who voted for Donald Trump clearly feel it is broken, but I am not sure they are that smart”, or “I am doing ok, and I think the system is fair. Yes people like that Elon Musk character have ‘X’ times more than me but he is also ‘X’ times more clever than me so he deserves it!”.

But the system feels sufficiently broken to those who voted for Trump, that they were desperate enough to vote for him, and there appears to be some similarity with the ‘Brexit’ vote in the UK.  Something has to change, even if it is just perception or we are going to keep having to live with these kinds of election results.

Also, either Elon Musk is really clever, in which case we should listen when he is proposing that we need to make changes to wealth distribution (soon, if not now),  or, he is not clever, in which case he does not deserve his wealth.  Either way, we need to consider changes.  Continue reading “Is our wealth distribution system really broken?”

Highlander Economics: Does it end with only one?

mv5bmtyxmzc0ndk1nv5bml5banbnxkftztgwntcymdeyode-_v1_ux182_cr00182268_al_
from IMDB

Back in 1986, the movie Highlander was released. It was actually sufficiently successful to inspire four sequels, plus spin offs and even a reboot. Something in the original clearly stuck a chord, and the tagline and concept ‘in the end there can only be one’  could be part of this.  The plot centres around a small group of individuals, immortals, who become ever stronger by defeating ‘competitor’ immortals in mortal combat.  The immortals all seem have a share of power. Defeat another immortal and grow stronger as the victors gain the power of the vanquished, until only one immortal remains, and the one remaining will hold all the power.  So how closely does the ‘rules’ of the highlander actually match the ‘rules’ for competitor companies?

How accurate is the analogy? Continue reading “Highlander Economics: Does it end with only one?”

Free Trade: Why everybody has budget deficits

debtGovernments of developed countries all around the world are running budget deficits right now, and the reason follows from free trade.  I have posted before on how every ethical decision our society makes comes at an economic cost. In many cases, this economic cost is a government cost and require increasing taxes, but in today’s free trade world international competition now dictates low tax rates to be competitive. The result is inescapable deficits. Continue reading “Free Trade: Why everybody has budget deficits”

Trump: Real Problem, No Solution

The USA does have a real problem.

Donald Trump has a campaign slogan ‘Make America Great Again’.  So has America stopped being great?  The USA has changed from a country where most people saw their incomes increasing and saw themselves getting richer, to a country where most now see themselves getting poorer.  For people seeing themselves as becoming poorer, America seems not as great as it was. Donald Trump may not have the answer, but so far he is the only one in the campaign saying he sees that there is a problem, and he recognises the pain, and that America is as great as it should be.  I suggest this is propelling Trump forward, and if the Democrats keep denying there is any problem, then Trump could go all the way.

Look at the graph to the right. From the mid 1920s, src= http://inequality.org/wealth-inequality/until the early 1980s  the gap between the rich and poor in the USA closes. Most of the population were getting closer in wealth to the rich, so they also felt richer.   This was also a period overall of real wage growth, people not only felt richer, the were getting richer.  From the early 1980s gap between most people and rich started widening again, making people feel less and less rich. Over this same period most data sources has seen no real median income increase  and many suggest for the most recent few years there has been an income decline.  So while middle America is at best going nowhere the rich still get richer than ever making everyone else feel relatively increasingly poor. Continue reading “Trump: Real Problem, No Solution”

Lessons from SciFi: Future Expansion

By Monomorphic at English Wikipedia - Transferred from en.wikipedia to Commons by Elvis using CommonsHelper., Public Domain, https://commons.wikimedia.org/w/index.php?curid=4353656The actor Morgan Freeman has declared he is determined to produce a movie based on the novel ‘Rendevous with Rama’ by Arthur C Clarke.  Great Sci-Fi writers like Clarke are renown for their insights in to the possible future and this novel is no exception.  After again reading this novel I realised the insights into possible future with regard to the human population is extremely thought provoking. Continue reading “Lessons from SciFi: Future Expansion”

Blog at WordPress.com.

Up ↑

%d bloggers like this: