One Finite Planet

A deeper look how EVs impact the power grid.

First Published:

Table of Contents

What is the real answer to how the grid will cope? First, the answer from an actual power company, a link to one from a popular vlogger, both of which should placate most people, although neither is water tight as both skip over some details critical to the full answer.

But it is when looking at the deeper questions on the impact will be on power bills, grid reliability, and the transitioning of the grid to renewables, that real surprise emerges: the grid NEEDS EVs!

If all cars were electric, the grid could not cope!

The switch to EVs is not instant, and the grid has always been growing.

Data will vary from country to country, but as the USA has some of the highest rates of vehicle ownership, and some of the longest distances driven per person, if the grid in the USA can cope, then most other countries should also cope.

In 1950, the grid in the USA produced 335 billion kWh which had risen to 4.1 trillion kWh in 2020, according to data from the US government Energy Information Administration, which represents 3.65% growth per year.

The real question becomes, “will the fastest possible switch to EVs will increase needs by more 3.65%”?

Will adding EVs require more growth of the grid than the historical average?

This is a better question, as without magic, not all cars are electric today. They couldn’t be all electric tomorrow either, as even the dealer networks cannot handle delivering a new car to every driver within 24 hours.

More seriously, there are lots of constraints on how fast we could all switch to EVs, and the main one is how fast could EVs be built and then purchased by consumers. Even though most people are not buying EVs now in 2022, there is a very long waiting time on orders of EVs.

The Answer From and electricity provider: SWEPCO.

Devils Advocate: Does the power company video nail it?

Fact checking.

That SWEPCO video may silence most doubters, and provide assurance to many who had doubts, but it is still open to question.

The big thing is does not answer, is why an electricity provider is promoting EVs, which I think is as important as the rest of the topic. EVs give energy providers a way to increase revenue, other than just increasing prices. More on that later.

The video covers 3 points:

  1. How much energy EVs require.
  2. Overall production of power in the US.
  3. What is the rate of EV adoption.

The first two are well covered, but the with the third one, I think it opens the door to doubters by raising the wrong question.

I think instead of the question “what is the adoption rate of EVs”, which leaves open the reply of “but the push is for faster adoption!”, the better question is “what would the fastest possible adoption rate of EVs?”, plus the answer an option rate has several errors, which a critical viewer could spot. Most of these relate to seeming to confuse percentage of new cars sold with number of vehicles sold, and missing the fact that given that the US had 275,924,442 registered vehicles as of 2020, and the highest ever recorded number of new vehicle sales was 17.6 million, it would still take at least 15 years to replace all existing vehicles, even if 100% those new vehicles sales was an EV replacing a fossil fuelled vehicle.

That math alone would probably fix the video as far as that goes, but then there is an error with the overall production of power data, as growth is erroneously stated as 5x growth or 4% annually from 1960 to 2020. However, 4% growth over 60 years is over 10x growth, not just over 5x growth as stated in the video. It turns out the error results from a misquote of the timespan as stated in the Engineering Explained video below, the error raises the question as to why not look at grid capacity from 1960 to 2020? Or from 2000 to 2020 when the powers supplied barely grew at all? What is the relevance of any specific period?

Electricity Produced vs Grid Capacity.

While power supplied obviously cannot exceed grid capacity, normally the constraint is market demand. Grid capacity only becomes the constraint when there are blackouts, and limits on the use of electrical power, because demand would exceed supply.

All the statistics and the graph are about demand, not capacity.

Once it is made clear the graph is about demand, then cherry picking a long period when demand grew, in order to show that when demand grew the grid could keep up, can arguably be justified. When demand it not grow, it is even possible capacity still grew, we just cannot say. This gives the justification for using the period from 1960 to 2000, when demand did at 4% per year, over long time period, and capacity was able to meet the demand.

In reality, from around 2008 demand for power stopped growing due to led bulbs and all the other focus on power efficiency efficiency. Without any increase in demand, it is not possible to be sure whether the grid would have been able to continue increasing at 4%, but there is no evidence the grid would not have been able to continue increasing had the demand still been rising.

Engineering Explained.

Clearly, this was the inspiration for the SWEPCO video above. The 4% growth figure does correlate with the period between 1960 and 2000, rather than the 1960 to 2020 misquoted by SWEPCO, largely because power demand ceased rising from around 2008.

There is also an ambiguity in the data used for this video. The 13,500 miles per year is interpreted to be per driver, as opposed to per vehicle, and the source does say per driver, but it is hard to clarify if it is truly per driver or per vehicle. However, giver it does seem to be true that there are more drivers than active vehicles, if there is an error, it would result in an overestimate of the electricity required.

The main question the video leaves unanswered, is what is the fastest rate the EVs could be replacing internal combustion vehicles? While low current rate of EV adoption at the time of the video is quoted, the video leaves future adoption as an unanswered question, and could even leave the impression that all cars could become EVs by as soon as 2030, as it seems to suggest bans that actually apply to new vehicles sales, could force all vehicles to be replaced by EVs at their effective date, which is simply not even possible.

EV adoption rate or how soon could all cars be EVs?

Full transition: not before 2045.

Analysis on the fastest possible adoption rate is not present in the Engineering explained video, or in the the SWEPCO video that was at least in part based on the Engineering explained video.

A full analysis of the transition to EVs shows that globally, the transition to EVs will not replace current cars with EVs until at least 2045, but the transition will not necessarily be evenly spread, so dividing total new EVs by the number of years overall may not reflect the peak adoption rate.

Peak Adoption: The real challenge, is below 1/6th the long term average.

Data from Statista.

Staying with USA based data, Statista shows that the record year for new light vehicle sales in the USA was 2016 with 17.6 million sales, and as the trend is flat or perhaps having peaked, it appear safe to assume new vehicle sales in the USA are highly unlikely to exceed 20 million. If at some point, there are 20 million new vehicle sales where all are EVs, and 20 million are replacing ICEVs, that gives a maximum possible load on the grid of 20 million vehicles in one year.

Using the calculations from Engineering Explained, the increase for a worst case year would be:

13,500miles x 20 million vehicles ÷ 100 MPGe = Gallon equivalents used = 2,700 million gallons

Gallon equivalents x 33.7 = 90,990 million kWh added in the worse possible year.

The current rate of electricity consumption 14.1 trillion kWh, and although this should be rising throughout the transition to EVs, assume for the moment that this greatest increase in EVs possible, somehow immediately, rather than years later when consumption as already risen, making the percentage increase the maximum possible.

The result for this worst possible case year would be a 2.22% increase year on year, or just over 1/2 of the average percentage increase between 1960 and 2008.

So the simple answer is the worst possible year would still require far below the long term average increase in grid supply.

Can the grid still increase now the focus is ‘green’?

Overview: The grid needs EVs!

‘Can the grid cope without EVs could be a better question’ could be the real question.

Grid supply has stagnated and not increased since around 2008, not because of supply constraints, but because with all the efforts to reduce ‘environmental footprints’, and more efficient appliances and lighting, the demand for electricity has been stagnant.

Yes, despite the ‘green’ movement killed off growth for the power companies, they have still been asked to invest in the transition to renewables. This is despite that the low cost of solar and wind means they face pressure to reduce prices as a result of adding solar and wind!

Increasing demand for electricity as a result of increased EVs provides a solution. Transferring a significant portion of the revenue motorists were paying the oil industry, over to the electricity industry, gives power companies some much needed revenue to fund trying to transition to renewables.

There is an argument the EVs will not significantly reduce emissions, because most power grids mostly burn fossil fuels, but the point that is lost, is that EVs bring new revenues to fund grid expansion, which could enable most countries to improve their grids. As it can be argued the power for EVs will come from the additional grid capacity added as the grid expands, not the original grid, and the expansion to the grid, should be able to be greener than the original grid.

A return to growth for electricity providers.

Adding EVs to the grid can solves the stagnant demand, and return the grid to closer to previous rates of growth. Stagnant demand is a problem for power companies, as it means the only way they can grow revenues is to increase prices.

As EVs arrive, motorists switch from spending at the gas pump, to spending at their electricity provider, which is why electricity providers like SWEPCO bother to promote EVs and make videos.

EVs can provide a return to revenue growth other than through raising prices. Of course this doesn’t mean providers wont raise prices, but it does give them less reason to need to raise prices.

Predominantly off peak demand, the best for the grid.

For providers, the ideal is to provide as close to the same level of power as possible 24/7. The grid, staff, and many generators, are fixed cost assets that cost the same even when demand falls. so keeping demand constant bring efficiencies.

Data reveals EVs are charged at home over 95% of the time. Given most people spend a lot of time at home, that allows most charging to take place when rates are lowest, and since of peak rates don’t pass on all the savings to the providers, that also means best profits to providers.

In summary, EVs don’t ensure all the challenges of providing green power are solved, but EVs do provide energy providers the alternative for revenue growth during the transition to green energy other than just more price prices.

EV Batteries could play a key role in the future grid.

There is pressure to move to renewables, and solar and wind alone are not a substitute for fossil fuels. To work with renewables, storage is needed for when the wind isn’t blowing and the sun not shining. What is often underestimated, is just how much storage could be provided by EVs. If vehicle to home as provided by the Ford F150 lighting becomes common, every EV would be helping provide a lower cost, more reliable grid. There are a few twists and turns on the road to EVs and renewables, and the role of vehicle to the home power could be very significant.

Solar could party spoil the energy providers party.

Solar EVs are just starting to arrive on the market, and at this stage they are fringe. Although EVs themselves have proved how things can move from fringe to become the future, it is hard to imagine solar EVs reaching more than 10% at most during the initial transition to EVs.

The main threat to solar poses to energy providers is home solar. The two main renewables so far are solar and wind, and wind still needs the grid, whilst if home solar becomes big enough, not only could a significant number of EVs ed up powered by home solar, the EVs could also provide the batteries to enable home solar homes to significantly reduce reliance on the grid.

Home solar, connected with EV batteries, has the potential to in many countries full offset that maximum of 2% annual increase to demand on the grid that EVs could introduce, and put energy providers back to square one.

It is not guaranteed the grid will ever see anywhere near that maximum 2% per annum, or even ever see close to 1%.

Summary and Conclusion.

Adding EVs to the grid, only requires a maximum possible of 2% annual increase, which just over half the rate of 4% growth that was the normal for energy providers from years 1960 to 2000, which was the last time demand for electricity was growing.

Not only is 2% growth manageable, this growth can provide the energy companies revenue, and enable them to be better placed to provide lower cost, reliable grid while shifting to increased renewables.

People can switch their spending from gasoline/petrol over to electricity, and keep the savings for themselves. Instead of giving all their gasoline/petrol money to the oil companies, the reduced amount they still spend can provide force the power companies with an alternative to increasing power bill as demand otherwise falls.


Updates.

  • 2022 Aug 15: Added notes on solar.